8:00 - 9:00 Registration

In-person session (Oral Presentation)

(live presentations in a conference room with ZOOM streaming)

9:00 - 9:10 Opening (10 min)

9:10 - 10:30 Block 1 - Deep Learning in Medical Shape Analysis

Time	Tile
9:10 - 9:40	Shaping up: Introduction to Shape Analysis (Keynote)
9:40 - 9:55	SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction
9:55 - 10:10	Anatomy Completor: A Multi-class Completion Framework for 3D Anatomy Reconstruction
10:10 - 10:25	Anatomy-Aware Masking for Inpainting in Medical Imaging

10:30 - 10:45 Coffee break

10:45 - 12:00 Block 2 - Shape Methods

Time	Tile
10:45 - 11:15	Deep Neural Networks To Analyze Deformable Shapes From Images (Keynote)
11:15 - 11:30	Particle-Based Shape Modeling for Arbitrary Regions-of-Interest
11:30 - 11:45	Predicting Shape Development: A Riemannian Method
11:45 - 12:00	3D Shape Analysis of Scoliosis

12:00 - 13:00 Adjourn / Lunch

Virtual session (Poster Pitch)

(virtual presentations via ZOOM and live Q&A)

Time 13:00 - 13:05	Tile C3Fusion: Consistent Contrastive Colon Fusion, Towards Deep SLAM in Colonoscopy
13:05 - 13:10	Optimal coronary artery segmentation based on transfer learning and UNet architecture
13:10 - 13:15	Unsupervised Learning of Cortical Surface Registration using Spherical Harmonics
13:15 - 13:20	Unsupervised correspondence with combined geometric learning and imaging for radiotherapy applications
13:20 - 13:25	ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images
13:25 - 13:30	Body Fat Estimation from Surface Meshes using Graph Neural Networks
13:30 - 13:35	Geometric Learning-Based Transformer Network for Estimation of Segmentation Errors
13:35 - 13:40	On the Localization of Ultrasound Image Slices within Point Distribution Models
13:40 - 13:45	FSJP-Net: Foreground and Shape Joint Perception Network for Glomerulus Detection
13:45 - 13:50	Progressive DeepSSM: Training Methodology for Image-To-Shape Deep Models
13:50 - 13:55	Muscle volume quantification: guiding transformers with anatomical priors
13:55 - 14:00	Geodesic Logistic Analysis of Lumbar Spine Intervertebral Disc Shapes in Supine and Standing Positions
14:00 - 14:05	SlicerSALT: From medical images to quantitative insights of anatomy
14:05 - 14:10	AReg IOS: Automatic Registration on IntraOralScans
14:10 - 14:15	Modeling Longitudinal Optical Coherence Tomography Images for Monitoring and Analysis of Glaucoma Progression
14:15 - 14:20	IcoConv : Explainable brain cortical surface analysis for ASD classification
14:20 - 14:25	DeCA: A Dense Correspondence Analysis Toolkit for Shape Analysis

Best paper award presentation