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Outline

• Disentanglement
• variational auto-encoder (VAE)
• human face generation

• Brain aging

• Longitudinal brain imaging of neurological disorders
• Alzheimer‘s disease (the most common type of dementia)
• Brain tumor

• Understanding how the biological brain works
• How the brain perceives faces (vision, face recognition)
• How the brain perceives languages (speech comprehension)

• Opportunities and Challenges
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reconstruction term latent space regularization (KLD loss)
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Disentangled Representation Learning

• Posterior 
• The regularization term (KLD loss) forces the covariance matrix of the latent variables (𝑧) to be diagonal
• The dimensions of the a latent variable (𝑧) are independent

• Independence is a precondition of the representations being disentangled
• VAE is a popular choice for disentangled representation learning

𝑞θ(𝑧|𝑥) ≈ 𝑁(0,1)

Ԧ𝑧 dimension 1 dimension 2 dimension 3 dimension d ∙∙∙

, 𝑧 ∈ 𝑅𝑑
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face factors: age, gender, wear eyeglasses, pose, expressions (cry, smile, etc)… 

[Shen, Y. et al. TPAMI, 44 (4), pp  2004 - 2018]
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• Factors must be inherently independent/uncorrelated (such as ‘age‘ and ‘gender‘) in order to be disentangled 
• Such a disentangled representation allows us to generate new faces that are different from the original face regarding only one factor
• Each disentangled factor is a basis of the latent space, and all latent variables can be expressed as a linear combination of the three 

bases.  An inner product between the latent representations Ԧ𝑧 and a basis (Ԧ𝑖, Ԧ𝑗 or 𝑘) yields the corresponding factor 

Ԧ𝑧 = 𝑔 ∗ Ԧ𝑖 + 𝑒 ∗ Ԧ𝑗 + 𝑎 ∗ 𝑘

𝑔 = Ԧ𝑧 · Ԧ𝑖
e = Ԧ𝑧 · Ԧ𝑗

𝑎 = Ԧ𝑧 · 𝑘
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https://arxiv.org/pdf/2005.09635.pdf


[Sivera, R. et al. NeuroImage, pp.255-270]

medical images (e.g., MRIs)
• identity factors: age, gender, etc of a patient
• medical factors: disease/pathology (e.g., Alzheimer‘s disease) 

goal: to model the morphological brain changes induced by normal brain aging

method: by disentangling the “age” factor from brain MRIs
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[Zhao, Q. et al. MICCAI 2019, pp. 823-831]
p
(𝑧
|𝑐
)

VAE: 𝑧~𝑞 𝑧 𝑥 , x′~p x z

Age: c~q c x , z~p(z|c)

𝐿 𝑥 ≔ 𝐥𝐨𝐠𝒒 𝒄 𝒙 + 𝐸𝑞 𝑧 𝑥 log 𝑝 𝑥 𝑧

−𝑬𝒒 𝒄 𝒙 [𝑫𝑲𝑳(𝒒(𝒛|𝒙)||𝒑(𝒛|𝒄)]
𝒖 ∈ 𝑹𝒅

a linear layer

• latent representations 𝒛 are conditioned on age via a linear layer 𝒖

• 𝒛 = 𝑐𝒖 ↔ 𝒖 is the basis of age (age c is a scalar)
• traversing along the 𝒖 direction yields age-specific latent variables 

and brain MRI reconstructions

age 

morphological brain changes with aging 𝒖

distribution of latent variables
In the generated MRIs, the ventricle expands with aging, which is 
consistent with current clinical understanding of brain development

𝒙: brain image

https://arxiv.org/pdf/1904.05948.pdf


• Alzheimer‘s disease (the most common type of dementia)
• Brain tumor

longitudinal MRIs are commonly used to track the progression of the neurological  diseases:

[Sivera, R. et al. NeuroImage, pp.255-270]

• both normal aging and Alzheimer‘s disease (AD) 

can cause morphological brain changes

• we want to separate the AD effect on brain 

morphology change from normal aging

• it is assumed that nornal aging and AD are 

assumed to be two independent factors

normal aging

disease(AD)

• the two factors (normal aging and AD) can be 

disentangled

for brain tumor:

goal: to model the treatment response of a single cancer drug

issues: the effects of different drugs on tumor response are NOT independent. if patients receive a 

combination of drugs for treatment, the effect of a single drug cannot be singled out
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𝜏𝑎 ∈ 𝑅𝑑

𝜏𝑑 ∈ 𝑅𝑑

input: a pair of MRIs taken from the same subject but at different 
time points, and a dummy variable (1)

𝑅𝑑

for normal cases (neurologically healthy subjects)
• aging is the only time-dependent factor for brain morphological change

• ∆𝑧 = 𝑧𝑠- 𝑧𝑟// 𝜏𝑎 → max cos(𝜃<∆𝑧, 𝜏𝑎>)

for diseased (AD) cases
• both normal aging and AD affect the brain morphology

• aging and AD are the only two time-dependent factors affecting the brain 

morphological change

• ∆𝑧𝑑= ∆𝑧 − ∆𝑧𝑎 // 𝜏𝑑 → max cos(𝜃< ∆𝑧𝑑, 𝜏𝑑>)

𝜏𝑎

∆𝑧

𝜏𝑑
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[Ouyang, J. et al. IEEE TMI, 41(10) pp. 2558 - 2569]: learn the two bases (i.e., 𝜏𝑎 , 𝜏𝑑) directly  

𝜏𝑎

𝜏𝑑

∆𝑧

∆𝑧 ∙ 𝜏𝑎

∆𝑧𝑑

∆𝑧𝑎= (∆𝑧 ∙ 𝜏𝑎) 𝜏𝑎

∆𝑧 = ∆𝑧𝑎 + ∆𝑧𝑑

https://pubmed.ncbi.nlm.nih.gov/35404811/


[Ouyang, J. et al. IEEE TMI, 41(10) pp. 2558 - 2569]
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simulate the effect of normal aging on brain morphology change 

for normal (NC) and AD subjects 

𝜏𝑎

𝜏𝑑

simulate the effect of AD on brain morphology change

(compared to normal subjects) given different ages 

𝜑𝑎
𝑖 = 𝑧𝑖 ∙ 𝜏𝑎

to simulate the aging effect

𝑁𝐶
number of normal controls (NC) 

age (a scalar) to be simulated

𝜑𝑑
𝑖 = 𝑧𝑖 ∙ 𝜏𝑑

to simulate the AD effect

𝑁𝐷𝑘: number of normal AD subjects

age (a scalar) to be simulated

https://pubmed.ncbi.nlm.nih.gov/35404811/


[Higgins, I. et al. Nature communications, 12(1), pp.1-14]
different brain neurons respond to different facial factors (hair, gender, age, ethnicity, etc). In other words, the responses of 

brain neurons are disentangled in face perception.  

activations of brain neurons

disentangled latent units 𝒛

(3) decode human face from the brain neuron 

activations of a primate  

each brain neuron has strong correlation (thickest green
line) with only one disentangled latent unit (facial factor)

(1) use a VAE to learn disentangled facial representations 𝒛

(2) record the brain neuron activations of a primate while showing the 

primate human faces. (green lines: regression weights)
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Use lasso regression to predict neural activations from 

disentangled latent units 𝒛

Face perception
which brain neuron responds 

to which facial factor

https://www.nature.com/articles/s41467-021-26751-5
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Data acquisition: record the brain fMRI (≈ 4 hours) from 345 subjects while they are listening to stories (audio stimuli).

Given GPT-2 (a pre-trained language transformer) and the subject the input (a sentence of M words) 𝑤 = (𝑤1, … , 𝑤𝑀):

[Caucheteux, C. et al. ICML 2021 pp. 1336-1348]

Latent representations learned by a language model such as GPT-2 

disentangle syntax (structure and grammar) and semantics (meaning

and logic) of a sentence, which can be linearly mapped to brain activities

(1) Pretrained GPT-2 model 

• 𝑅 𝑋9 the activations extracted from the 9th layer of GPT-2

• 𝑅 𝑋9 the syntactic factor of 𝑤

• 𝑅 𝑋9 − 𝑅 𝑋9 the semantic factor of 𝑤

𝑅 𝑋9

syntax

semantics

𝑅 𝑋9

𝑅 𝑋9 − 𝑅 𝑋9

𝑅 𝑋9
𝑅 𝑋9𝑅 𝑋9 − 𝑅 𝑋9

color code: brain scores

(2)   Map network activations to the corresponding brain fMRI recordings

• Mapping: ridge regression

• Mapping quality: Pearson correlation score (the brain score)

Language/speech perception

https://arxiv.org/pdf/2103.01620.pdf
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Opportunities

• Disentangled representation learning is advantangeous in modelling longitudinal 

data, which are common in neuroimage analysis

• Contrast to the black-box deep models, disentangled representations are human-

interpretable, which offers a natural interface between deep learning and human 

domain knowledge

Challenges:

• Data are harder to acquire, and ethical approval is more complicated (animal 

experiments, clinical trials on humans) than conventional medical data

• Biological factors are usually not strictly independent e.g,  disease-age effect 

(neurological diseases cause accelerated aging), age-gender effect (gender plays a 

role in brain aging)

[Coffey, C.E. et al. Archives of neurology, 55(2), pp.169-179]

[Király, A. et al. Brain imaging and behavior, 10(3), pp.901-910]

https://jamanetwork.com/journals/jamaneurology/article-abstract/1032900
https://pubmed.ncbi.nlm.nih.gov/26572143/
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