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For an unannotated CT dataset, given partial manual annotations, how to automatically generate whole-body (pseudo) annotations?

CT scan

Problem Statement

sparse/partial annotations whole-body (pseudo) labels

input: partial labels target: whole-body labels

3D shape completion (image from [1])

[1] Chu, L., et al. Unsupervised shape completion via deep prior in the neural tangent kernel perspective. ACM Transactions on Graphics (TOG), 2021



Dataset Creation: Single Class Dataset

[1] Wasserthal, J., et al., TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868 (2022)

• 737 sets of whole-body anatomies (451 training, 286 evaluation)
• Each set contains 104 anatomies
• To create partial labels, remove some of the anatomies based on their volume ratio:

o anatomies with a volume ration of 10% and above are removed (A)
o anatomies with a volume ration of 20% and above are removed (B)
o anatomies with a volume ration of 40% and above are removed (C)

Single-class dataset: anatomies are not distinguished (different anatomies have the same label “1”. The background is “0”)

Totalsegmentor whole-body segmentations [1]
a set of whole-body (104) anatomies

removed input (gray)
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Dataset Creation: Multi-class Dataset

• 12 anatomies (lung, heart, spleen, etc) -> 12 classes
• 18 sets of 12-class anatomies
• create 10 partial labels from each set by randomly 

removing some of the labels: 18*10=180 training samples

target for reconstruction 10 partial labels (input)



Method: 3D Denoising Auto-encoder (DAE)

Encoder Decoder

one-to-one relationship

• Learning a one-to-one (residual) mapping

• Learning a many-to-one mapping

• Loss function: two variants of Dice loss

residual mappingmany-to-one mapping

the mth partial label from set n

full label from set n

the missing labels of set n

Dice loss

• a one-to-one mapping is easier to learn than a many-to-one mapping
• DAE can detect what are missing in the input (which are random), and 

reconstruct them. DAE is expected to learn every possible combinations. 
• increasing M (the number of partial labels) increases the DAE‘s ability to 

do so 



Results: Single-class Reconstruction (104 anatomies, 1 class)

a single anatomy is missing

2.4%

4.3%

1.7%

1.2%
input(coronal)         ground truth           predictions

multiple anatomies are missing

• on three test sets Dtest1 (10%),  Dtest2 (20%),  Dtest3 (40%), the DSC (standard deviation) are 0.865 (0.074), 0.904 (0.039), 0.931 (0.030)
• better performance in reconstructing larger missing anatomies (Dtest3  40%) 



Results: Multi-class Reconstruction (12 anatomies, 12 classes)

input predictions input prediction

• Generate whole-body pseudo labels for an unannotated dataset (to train a whole-body segmentation network)

• Annotate the rib cage (and a few anchoring organs), and generate pseudo labels for the remaining anatomies
• How to choose the proper anchors, so that the positions of the reconstructed anatomies match the corresponding CT scan the best?



MedShapeNet

benckmark dataset: 3D shape completion, retrieval/classification, reconstruction…

ShapeNet: 3D CAD models of real-world objects: chair, desk, car, airplane…

https://shapenet.org/ 

MedShapeNet: (1) 3D models of normal and pathological human anatomies extracted from the 

imaging data of real patients. (2) a medical version of ShapeNet. 

normal                                                     pathological
https://medshapenet.ikim.nrw/ 

https://shapenet.org/
https://medshapenet.ikim.nrw/


input prediction groundtruth

facial bone reconstruction cranium bone reconstruction

Li, J., et. al., 2023. MedShapeNet - A Large-Scale Dataset of 3D Medical Shapes for Computer Vision. arXiv preprint arXiv:2308.16139

MedShapeNet: other shape reconstruction applications

benckmark datasets and codes: 
https://github.com/Jianningli/medshapenet-feedback/ 
 

https://github.com/Jianningli/medshapenet-feedback/


Conclusion

•Derived a benchmark dataset from whole-body segmentations for anatomical 
shape reconstruction (a subset of MedShapeNet)

•Proposed and evaluated a simple shape completion framework to generate 
whole-body pseudo-labels from partial/sparse manual annotations

•Achieved reasonable quantatitive and qualitative results   

Future Work 

• Include more (ideally whole-body) anatomies for multi-class anatomy completion
•Perform quantitative evaluation for each anatomy included
•Evaluate the multi-class completion framework in a whole-body segmentation task
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