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Fig. 3. training curve of the VAE and decoder regarding
Dice (left) and KLD (right) loss. 

Fig.4. Training a VAE (the same VAE used in Fig.3.) for 1200 epochs under β = 100. 
The curve shows the Dice and KLD loss in the entire training process..

Fig. 5. The distribution of the latent variables given β = 0.0001 (left) and β = 100 (right). The 
large filled circles represent the centroids of the respective skull classes. The black arrows on 
the RHS of the plot point from the origin (0, 0) to the centroids, and from the two defective 
centroids (red and blue) to the complete center (green).

Fig.6. Skull shape completion given β = 0.0001 and different γ. The first and second row 
shows the shape completion results given a cranial and facial defect, respectively.

Fig.7. Cranial shape completion results given β = 
0.0001 and β = 100. The implant shown in yellow 
corresponds to the deviation vectors DEVcr.

Fig.8. Facial shape completion results given β = 
0.0001 and β = 100. The implant shown in yellow 
corresponds to the deviation vectors DEVfa.

Fig.1. The dataset contains 100 samples for each of the three types of skulls - complete 
skulls (left), skulls with facial defects (middle) and skulls with cranial defects (right).
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Train a β-vae in two stages
Stage 1:  train a β-VAE using a very large beta.
Stage 2: train a decoupled decoder using only the reconstruction loss.
Full VAE:  aggregating the trained encoder, the sampling process from
Stage 1 and the trained decoder from Stage 2.
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o The two losses are antagonistic and might not be optimized jointly
for some datasets.
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The balance of the reconstruction loss and the kullback-leibler divergence loss in β-VAE

Large beta: continuous, Gaussian and more likely disentangled latent space.
Small beta: good reconstruction.
o A good generative model shall meet both requirements. 
o Given different datasets, beta usually needs to be specifically tuned (tedious).
o It is not necessarily guaranteed that a proper beta can be found for a specific dataset, 

as the two losses are inherently antagonistic and at times cannot be optimized jointly.

The expectation of the KLD term is a upper bound of the mutual
information between the data and the latent variables. 

Fig.2. 1D Gaussian 
distribution with 
increasing standard 
deviation.

o Decouple the reconstruction loss from
the kullback-leibler divergence loss, 
and meet the two requirements on 
the latent space and reconstruction in 
two separate stages. Stage 1 aims for 
a continuous and Gaussian latent 
space, and the Stage 2 aims for an 
optimal reconstruction.

Larger beta leads to a wider Gaussian 
distribution, and therefore higher 
uncertainty in the sampling phase, which 
makes it more difficult for the decoder to 
learn a proper reconstruction.
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With γ = 0, we expect that the resulting latent 

variable would be decoded to the original defective 

sample (i.e., skull reconstruction). With γ = 1, we 

expect that decoding the latent variable yields a 

complete skull (i.e., skull shape completion)

https://github.com/Project-MONAI/research-contributions/tree/main/SkullRec
https://github.com/Jianningli/skullVAE
https://www.tensorflow.org/
https://autoimplant2021.grand-challenge.org/
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