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Interactive Cranial Implant Design:

a). Post-craniotomy skull
model

b). Mirroring along skull
symmetry plane

c). Postprocessing d). Final cranial implant (green)

• high cost (commercial)
• time-consuming
• experience-dependent

Motivation



Automatic Cranial Implant Design:

• low cost
• fast
• in operation room (in-OR) design & manufacturing
• user-independent
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Technical Formulation
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Related Work

1Fuessinger, M. A. et al. (2017). “Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics.” 
2Morais, A. et al. (2019). “Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder.”

Automatic skull reconstruction:
• Statistical shape model (SSM)1

• Deep Learning2

Similarity:

• Fully data-driven (training set)
• Using artificial skull defects

Difference:

• SSM: skull mesh
• Deep learning: skull voxel grid

Challenges:

• High dimensionality: 512 × 512 × 𝑍

• 3D Shape learning: geometric priors?

• Boundary consistency (A)
• Bone thickness consistency (B)
• Shape consistency (C)

(A)                                       (B)                                           (C)



Dataset

1. Head CT CQ500 (http://headctstudy.qure.ai/dataset)

▪ 200 unique skulls1 for training (100) & testing (100) 
▪ Head CT Segmentation: thresholding (HU 150~max)
▪ Automatic Defect injection: segmentation (A), defective (B), implant (C)

Dataset Creation:

A B C

virtual   surgical defect real   defect

Cranial drill used in craniotomy

http://headctstudy.qure.ai/dataset


Defect Variations:

▪ Each skull has unique shape.
▪ The defects vary w.r.t. shape, size and position (quantitatively).
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A Coarse-to-fine framework

• A coarse implant can be learnt from downsampled data.
• The coarse implant provides the spatial information of the defected region.
• Fine implant can be learnt from the defected region (not the whole data) 

with some surrounding information.  



Configurations & Implementation

• How to extract the defected region?
1.    Coarse implant prediction
2.    Upsampling
3.    Bounding box
4.    Margin
5.    Zero-padding

• How is N1 and N2 chosen?
1. Architecture: A fully convolutional autoencoder
2. Parameters

• How to transform the fine implant back to the original dimension? 



• How to extract the defected region?
1.    Coarse implant prediction: predict coarse implant from downsampled skull 128 × 128 × 64
2.    Upsampling: interpolating the coarse implant to its original dimension 512 × 512 × 𝑍
3.    Bounding box(bbox): a bounding box tightly encloses the defected region X × 𝑌 × 128
4.    Margin: include some surrounding skull  (X + 2𝑚) × 𝑌 + 2𝑚 × 128,𝑚 = 10
5.    Zero-padding: to make the extracted defected region have the same dimension 256 × 256 × 128

512 × 512 × 𝑍

Defective Skull

(𝐵𝐼𝑧)2562×128

512 × 512 × 𝑍

512 × 512 × 𝑍

Defective Skull

downsample
upsample bbox

margin
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• How is N1 and N2 chosen?
1. architecture: A fully convolutional autoencoder style network
2. parameters: N2 (~0.6m) has to be much lighter than N1 (~82m) to contain the GPU memory 

(𝐵𝐼𝑧)2562×128

𝑁2

(𝐼𝑓)2562×128

• Predict fine implant from the extracted region 

• How to transform the fine implant back to the original dimension? 

2562 × 128 → 5122 × 𝑍

An inverse process of zero-padding and margin applying



Results

• Quantitative:  mean DSC 0.8555 mean HD 5.1825mm, mean RE 0.15%
• Qualitative:     boundary (A), bone thickness (B) and shape (C)

(A) (B) (C)

White: ground truth

Red: prediction

implant

skull

skull

implant

Curvature



Input                                            N1 implant                                 N2 implant                            Groundtruth              

• N1 implant:  lacking surface geometric details 

• N2 implant:  surface geometric details reconstructed

• the implant matches well with the ground truth    

especially on the boundary (red)

HD red-green-blue colormap



Limitations

• trained and evaluated only on synthetic defect.
• N2 tends to fail on highly varied defects.

Position variations Size variations

Shape variations



Conclusion
• Shape learning can be fully data-driven, without relying on geometric shape priors (N1).
• The learning can be carried out on the defected region with limited surrounding information 

instead of on the entire skull shape,  which saves computation (N2).
• A coarse-to-fine framework that facilitates the processing of high dimensional data with limited 

GPU memory.  
• A baseline for the MICCAI 2020 AutoImplant Challenge.

Future Work
• Generation of more realistic craniotomy defects 
• Evaluation on real craniotomy data 

https://autoimplant.grand-challenge.org/

Dataset: AutoImplant Challenge

https://github.com/Jianningli/autoimplant
Source code:

https://autoimplant.grand-challenge.org/
https://github.com/Jianningli/autoimplant
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