

Clinical additive manufacturing for medical applications

A Baseline Approach for AutoImplant: the MICCAI 2020 Cranial Implant Design Challenge

Jianning Li^{1,2}, Antonio Pepe^{1,2}, Christina Gsaxner^{1,2,3}, Gord von Campe⁴, and Jan Egger^{1,2,3}

¹Institute of Computer Graphics and Vision (ICG), Graz University of Technology (TU Graz) ²Computer Algorithms for Medicine Laboratory (Cafe-Lab) ³Department of Oral and Maxillofacial Surgery, Medical University of Graz ⁴Department of Neurosurgery, Medical University of Graz

Motivation

Interactive Cranial Implant Design:

a). Post-craniotomy skull model

b). Mirroring along skull symmetry plane

c). Postprocessing

d). Final cranial implant (green)

- high cost (commercial)
- time-consuming
- experience-dependent

Automatic Cranial Implant Design:

- low cost
- fast
- in operation room (in-OR) design & manufacturing
- user-independent

Technical Formulation

Related Work

Automatic skull reconstruction:

- Statistical shape model (SSM)¹
- Deep Learning²

Similarity:

- Fully data-driven (training set)
- Using artificial skull defects

Difference:

- SSM: skull mesh
- Deep learning: skull voxel grid

Challenges:

- High dimensionality: $512 \times 512 \times Z$
- 3D Shape learning: geometric priors?
 - Boundary consistency (A)
 - Bone thickness consistency (B)
 - Shape consistency (C)

¹Fuessinger, M. A. et al. (2017). "Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics." ²Morais, A. et al. (2019). "Automated Computer-aided Design of Cranial Implants Using a Deep Volumetric Convolutional Denoising Autoencoder."

Dataset Creation:

- 200 unique skulls¹ for training (100) & testing (100)
- Head CT Segmentation: thresholding (HU 150~max)
- Automatic Defect injection: segmentation (A), defective (B), implant (C)

Cranial drill used in craniotomy

Defect Variations:

- Each skull has unique shape.
- The defects vary w.r.t. shape, size and position (quantitatively).

<u>A Coarse-to-fine framework</u>

- A coarse implant can be learnt from downsampled data.
- The coarse implant provides the *spatial information* of the defected region.
- Fine implant can be learnt from the defected region (not the whole data) with some surrounding information.

Configurations & Implementation

- How to extract the defected region?
 - 1. Coarse implant prediction
 - 2. Upsampling
 - 3. Bounding box
 - 4. Margin
 - 5. Zero-padding
- How is N1 and N2 chosen?
 - 1. Architecture: A fully convolutional autoencoder
 - 2. Parameters
- How to transform the fine implant back to the original dimension?

- How to extract the defected region?
 - 1. <u>Coarse implant prediction</u>: predict coarse implant from downsampled skull $128 \times 128 \times 64$
 - 2. Upsampling:
 - 3. **Bounding box(bbox):**
 - 4. Margin:
 - 5. Zero-padding:

interpolating the coarse implant to its original dimension $512 \times 512 \times Z$ a bounding box tightly encloses the defected region $X \times Y \times 128$ include some surrounding skull $(X + 2m) \times (Y + 2m) \times 128, m = 10$ to make the extracted defected region have the same dimension $256 \times 256 \times 128$

• Predict fine implant from the extracted region

- How is N₁ and N₂ chosen?

 <u>1. architecture:</u> A fully convolutional autoencoder style network
 <u>2. parameters:</u> N₂ (~0.6*m*) has to be much lighter than N₁ (~82*m*) to contain the GPU memory
- How to transform the fine implant back to the original dimension?

 $256^2 \times 128 \rightarrow 512^2 \times Z$

An inverse process of zero-padding and margin applying

Results

- Quantitative: mean DSC 0.8555 mean HD 5.1825mm, mean RE 0.15%
- Qualitative: <u>boundary (A)</u>, <u>bone thickness (B)</u> and <u>shape (C)</u>

Curvature

- N_1 implant: lacking surface geometric details
- N_2 implant: surface geometric details reconstructed
- the implant matches well with the ground truth especially on the boundary (red)

Limitations

- trained and evaluated only on synthetic defect.
- N₂ tends to <u>fail</u> on highly varied defects.

Shape variations

Conclusion

- Shape learning can be fully data-driven, without relying on geometric shape priors (N_1) .
- The learning can be carried out on the defected region with limited surrounding information instead of on the entire skull shape, which saves computation (N₂).
- A <u>coarse-to-fine framework</u> that facilitates the processing of high dimensional data with limited GPU memory.
- A baseline for the MICCAI 2020 AutoImplant Challenge.

Future Work

- Generation of more realistic craniotomy defects
- Evaluation on real craniotomy data

Dataset: AutoImplant Challenge https://autoimplant.grand-challenge.org/

Source code:

https://github.com/Jianningli/autoimplant

Clinical additive manufacturing for medical applications

A Baseline Approach for AutoImplant: the MICCAI 2020 Cranial Implant Design Challenge

Jianning Li^{1,2}, Antonio Pepe^{1,2}, Christina Gsaxner^{1,2,3}, Gord von Campe⁴, and Jan Egger^{1,2,3}

¹Institute of Computer Graphics and Vision (ICG), Graz University of Technology (TU Graz)
 ²Computer Algorithms for Medicine Laboratory (Cafe-Lab)
 ³Department of Oral and Maxillofacial Surgery, Medical University of Graz
 ⁴Department of Neurosurgery, Medical University of Graz